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ABSTRACT

Visual inspection is widely used to improve thaatility of in-service products such as
wind turbine blades (WTBs), aircraft surfaces, andges. Lowering costs by reducing
maintenance hours and increasing labor safety,edsitrg production and service
downtimes, promoting high accuracy inspections &l as making early repair are
motivating factors for having reliable visual inspen techniques. In this study, a new
image processing technique was investigated tesasteability to detect surface flaws
on a WTB on-tower. The method was tested by varyinegparameters of the surface
flaws as well as the parameters of the method.wds found that detecting and
quantifying cracks as small as hair thickness witmputer-based visual inspection is
feasible and the orientation of a crack was nosisee to image processing so that the
inspection camera does not need to set up at afispaagle to detect cracks. It was

found that uneven background illumination was notnajor concern for the edge

detection methods and can be reduced by using izetihthreshold number and opening
images techniques with the line detection method.atldition, the accuracy of

qguantifying a crack was improved by reducing neigh the intersection two processed

images from different methods.
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CHAPTER 1: INTRODUCTION
Wind energy provides more than 3% of total U.Scteieity supply and contributes
more than 10% of total electricity generation ix siates with two of these states being
above 20% (Chen, 2012). Most of the wind farms hastalled turbines in the past 10
years and the installation capacity is expectedréav continuously at more than 25%
per annum to meet the Department of Energy (DOE9 2nd energy portfolio by 2030
(NREL report, 2008). Although the design life ofvand turbine is 20 years, early failure
often affects critical components and causes sagmf down time, causing concern for
power generation companies and investors. RotaleBlare one the largest mechanical
components of a wind turbine and cannot be mordtoas easily as electrical
parts/controllers and smaller mechanical componentsh as bearings. The limited
monitoring ability of current Operation and Maindéece (O&M) functions for wind
farms can lead to higher energy costs and poseeattto the development of offshore
wind farms, which counts for 4% of the DOE 2030 dvienergy portfolio. In addition,
the general public has voiced a number of concabasit the viability of wind energy.
To address part of the viability and cost concerasgarch on reliable and cost-effective
blade monitoring systems is warranted.
Rotor blades account for roughly 18% of the totabine cost and have significant
challenge of maintenance due to the large-scalgépwar and non-unique complex
materials. The annual O&M cost of a wind farm i§ 6. 2.5¢/kWh based on the
capacity and the operation years and it accounts 2% of the total COE for a wind

project, based on current COE figures of 3.5 — tstkWh (Sandia-Walford, 2006).
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Although lack of information on cost breakdown ofhgponents of O&M, blade failure

ranks in the top third of failure rates among ladl tritical large mechanical components.
In addition, it adds a significant downtime peddeg, which is 4 days on average with
expensive equipment such as cranes required alothg skilled technicians (Hahn,

2006). Early inspection can help prevent sevengcsiral damage and reduce O & M
costs (SGS Group, 2010). A report by SGS grouptpaut that there is 26% additional
cost to blade manufacturers to fix a blade incidertcould have been corrected by an

increase of 0.64% of the total turbine blades tm#he third-party inspection company.

—

Electrical System
Electronic Control
Sensors

Hydraulic System

Yaw System
Rotor Blades
Mechanical Brake

Rotor Hub

Gearbox
Generator

Supporting Structure /Housing

Drive Train
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Annual failure frequency [-] Down time per failure [days]

Figure 1. Failure frequency and downtime of componas
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WTBs Background

Turbine blades are coated with two thin layersehcgat layer and an environmentally
friendly water-based varnish, to prevent infiltoatiof moisture, sand, and salt into the
underlying fiberglass composite material which t=ad to delamination and other types
of structural damage. Depending on the stresseppdi the blade surface, the thickness
of gel coat may vary between 0.3mm where loadsigineand 0.6mm along the leading
edge where it makes first contact with wind anddfoare particularly high (DNV,
2010). The health of a blade skin is a major maiee concern and is a significant
contribution to energy cost using existing on-towespection and repair methods. Also
it is difficult to insure consistency in manual pegtion because inspectors vary in their
ability to detect small surface flaws that accurteilander normal blade working
conditions such as hairline cracks on the bladéaser With wind energy moving
offshore, the rotor blades will experience a mohallenging environment — high
moisture and salt — and potentially higher mainteeacosts.

Blade Skin Defects

Surface damage like gel coat cracks and erosion significantly reduce the
aerodynamic efficiency of blades and lead to stmatt damage, which is more
challenging to detect and repair. Since surfaceagg@ms relatively easy to inspect,
inexpensive to repair, and will prevent future stwmal damage, blade surface health
monitoring should be given more attention. Unfodighy, current rotor blade surface
health inspection is performed by “sky workerstheicians hanging by a rope from the

tower doing close inspection and repair, or telpesp which can be used to capture
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blade surface images from the ground. Also, repaiisions are based on visual
inspection which is known to cause high variabiiriythe results. In addition, on-tower
inspections add downtime to the wind turbine thall weduce annual electricity
production.

This paper addresses the characteristics of the VgliBace flaws and method
parameters for computer-aided visual inspectiomil& methods have been considered
in aircraft health inspection. For example, a siscepic method has been successfully
applied for a limited number of surface cracks waraft skins (Siegel 1997). Therefore,
further investigation is warranted to assess tipalgiity of image processing techniques
in the detection of cracks in the gel coat layeeally, the results of an inspection should

characterize the size and severity of cracks dalieaneed for repair can be determined.
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CHAPTER 2: RELATED RESEARCH
Wind turbine blades are not a “fit and forget” itesimce a variety of environmental
events like lightning strikes, rain and wind erosall cause of damage (Marsh, 2011).
Wind turbine blade surface flaws can have a sewepact on fatigue experienced by the
turbine blades and lead to early “wear and teamalge. Examining early surface flaws
and repairing on time can prevent future structdeshages, reduce operation downtime,
and save O & M costs.
More rotors in operation and rotors increasingperation hours lead to increased blade
maintenance. Until recently, wind farm operatorgleeted inspection and preventative
maintenance. Comparing to commercial aircrafts, Wé&&eived less than 1/8 hours of
maintenance and is required to operate 8 timeslo(Wood, 2011). Many blades are
already past their warranty periods, especiallyEuropean countries. Current wind
turbine surface health inspection methods inclugeoap of sky workers walking on the
wind turbine blades over 300ft above ground vieesogttached to their bodies. Crawlers
or platform are also used to move maintenance wesrilng the rotor blades. Current
blade inspection of SGS group takes 30 hours/tarbiith inspector rates at $80/hour
and UT scanner rates $220/day (SGS, 2010). Sky imgris expensive and poses
serious safety risks to workers. Crawlers and @taté improve the working
environment of site employees and reduce the sgseasd dangers associated with
maintenance but still add downtime. All three melhase sky workers to perform close
inspections, laminate repair, infusion, gel-cogiaie and blade cleaning. They must

work with materials like polyester, vinyl ester aegoxy resins, along with glass,
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carbon, aramid and bio-composite fibers. Therefave|l-trained site workers are
necessary for performing the maintenance work. ¥ approach is to use a climbing
robot with a ground-based control station to wolbng rotor blades and to capture
images with high resolution camera (GE reports,220lmage processing techniques or
experienced engineers then analyze the imageshibabbots obtained. Rosa Guido in
Italy had published a paper on developing a lowt-cbmbing robot for offshore wind
turbine blades inspection in 2002 (Rosa, 2002).eGdrElectric (GE) and International
Climbing Machines (ICM) have developed a remotetiadied wall climbing robot with
a wireless high resolution video camera attachetsttack to capture blade surface
images. Fraunhofer Institute for Factory Operatiod Automation IFF also developed a
robot called RIWEA that can register any crack dethmination in the material with
exact positions (Fraunhofer IFF, 2013). Both ofstheobots require post image
processing. The literature has not addressed tlyeeeleto which a crack can be
recognized by image processing. Both of these ndetlawe still under developing or
testing and the cost is not clearly addressedisttitne. Another disadvantage is that
these robots cannot capture images while windnerblades are rotating.
Blades Surface Flaws
Typically, in-service WTBs have surface flaws i flollowing categories.

1. Erosion (leading edge erosion, also called pitdnd wear)

2. Cracks (Cracks in gel coat/channel cracks, stnegks)

3. Skin debonding (paint peeling, gel coat crackingd agel coat/skin

debonding)
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The gradual destruction of wind turbine blade stefais called erosion. Erosion is
caused by rain, sand, or other natural agentstaftects paint, gel coats, and fiberglass
lamination. Typically, erosion appears as a grotipnoall pits, which have a different
(darker) appearance compared to a healthy bladacsurMathematically, these pits
have depth and differ from other surface roughniégssdead insects which raise the
surface of a blade. However, erosion is difficaltécognize in point cloud format due to
noise and the current state of image processingntdogy. ldeally, computer-aided
image processing should be able to detect erosroiddntifying pitting geometry and
luminance.

Cracks become visually apparent as segments alengVirBs where the surface has
split without breaking into separate parts. Varimgustries have tried to observe and
characterize surface cracks. “Cracks usually hawelliminance and can be considered
as local intensity minima with rather elongatedustural characteristics (Giakoumis,
2006).” It is critical to determine whether the dtais in the surface coating, like a
scratch, or whether the crack affects inner lanonat Therefore, the crack inspection
method in the paper needs to address how depth ofaek reflected in a two
dimensional image. An effective crack inspectionthnd must be able to distinguish
between cracks in paint/gel coat and cracks affgétiner laminations.

Many early defects are hairline thickness cracka@kthe gel coat layer. Gel coat cracks
have various forms that can be found at the roctias®e of the rotor blades, or along the
leading edge and surfaces along the spar cab. daglctacks can have a single cause

and multiple causes.
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Stress cracks, also called linear cracks, usuappan when the laminate flexes under

load and generally show up as
parallel or concentric lines as
shown in Figure 2. Stresg
cracks can be parallel ar

traveling towards the sam

D

ending point.

Thermal cracks developed i

=]

random directions. Aging or 3

=4

gel coat layer that is too thick

can exhibit this problem

Parallel
Curvilinear
Stress
Convergent
Stress Field S
e, = Divergent
= U= StressField

Linear Cracks

Isotropic Thermal Fatigue

Thermal Cracks

. —___ Parallel Thermal Fatigue

Some researchers recogniz

thermal cracks are a result of

repetitious  expansion angd

contraction of the gel coat
form. It can be in a paralle
pattern  or

an isotropig

Reserve Impact

Radial Cracks

Frontal Impact

Figure 2. Types of gel coat cracks

configuration and it is characterized by short digswuous sections. Early thermal

cracks can be considered as a material or manuitagtoroblem.

Radial cracks, also known as crazing or impact dgmgypically occurs when an object

hits the laminate and causes damage like that showigure 2. The frontal impact is
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indicated by a concentric circle pattern, with thameter of the inner circle having a
relationship to the size of the impacting object.

Debonding is a failure mode in which bonding reisimemoved and the two bonded
layers of materials are separated. Debonding ogolsth the surface coating and inner
composite lamination. Skin debonding refers to ¢bating of the wind turbine blade
surface. It can be top paint peeling and gel chiat/debonding. Paint peels usually have
a polygon shape and can be mathematically repegemnt the image processing.
However, paint peeling and gel coat/skin debondage likely occurred in composited
made boat rather than wind turbine blades (Coackl@91).

Computer-based Visual Inspection and Challenges

Visual inspection is used to inspect commerciaidraft surfaces for defects. An aircraft
surface inspection is typically composed of 90%uaisinspection and 10% Non-
destructive Inspection (NDI) (Siegel, 1997). NDlaisvell-accepted method for finding
internal defects in composites. Image-based surfesgection can be used to determine
whether NDI is necessary or not. Currently, insjpectmethods depend heavily on
human eyes, which can be time consuming and hawe @ccuracy. Remote visual
inspection tries to address these issues.

Mumtaz described a mobile inspection unit calleel@mown Inspection Mobile Platform
(Mumtaz, 2010). This unit combines contourlet tfama and discrete cosine
transformation to find edges of flaws in the aifcsurface. Countourlet transform can
efficiently identify the intrinsic geometrical stitwre containing contours by filtering

discontinuous points. Discrete cosine transfornmatias used to extract features and to
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recognize pattern. Airlines have demonstrated éohrtology and apparently given it
some of approval. However, it has only been triadaocsmall sample set of simulated
cracks. The authors stated that the system muappleed to many new types of cracks
and surface issues before it can begin to replaggh visual inspections. Based on the
crack images in the paper, the author did not agdnew much detail of a crack can be
recognized and how to handle the missing part duthné uneven illumination of the
image background.

Some researchers are now trying to develop comyaised visual inspection systems
for WTBs to make use of the robot inspection meshexiplained earlier. WTB surface
images tend to have more noises comparing to &irsirece blades cleaning is not as
often as aircraft. Also, blade surface images hawee uneven illumination due to the
large scale, complex geometry, and on-tower ingpect

Image Processing

Image Structure

The synthetic cracks are RGB color images, whiehVax N x 3 arrays of color pixels,
where M and N are the width and height, respectjvef the image in pixels. This
represents a superposition of red, green, and tdumeponent images. Each matrix
element can have a value ranging from 0 to 255,revi255 represents full and 0
represents zero intensity level of a single cokwr instance, red color has intensity
[255, 0, 0]. RGB color images share the same cltexatics as the true images in the
MATLAB environment and this indicates that the babaof image processing of field

images should be consistent as the synthetic cr&aah of the component images can
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be interpreted as a gray-scale image, where thesgae image is M x N matrix of
pixels. Converting a RGB image to gray-scale elates the hue and saturation
information while retains the luminance. Image ps®sing with RGB images are
equivalent to process the three component imagesrately, where gray-scale images
contain the key information as RGB images but eatyuires 1/3 of the work. Therefore,
the method first converted an image from RGB tg/geale. Binary images, which have
either a black or white color for each pixel, watso used with the method. Most edge
detection functions return a binary image with Wisere the function finds edges and O
is elsewhere. Converting a gray-scale image tonarpiimage requires a threshold
number T, which turns every pixel of an image wtate if its gray level is larger than T
and black in the opposite (McAndrew, p.217). Thatdhnumber is widely used in
image segmentation and threshold number is dirdctked to the accuracy of the
detection method.

Image Segmentation

Segmentation is an image processing method in whkheh outputs are attributes
extracted from input images. Segmentation algosthar binary images are generally
based on discontinuity and similarity of pixels.w#ver, nontrivial images are one of
the hardest groups to apply the segmentation psogedo since too much noise is
generated during the image processing and not éndefgcts can be recognized due to
the non-uniform background illumination. Line detec and edge detection used in the
project are typical application of image segmeantatiLine detection has four standard

detector mask with orientations in horizontal, i@ty +45° and -45°. Edge detection is
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by far the most common approach to detect discoityirand there are various detectors
available for computing the gradient likéobel, Prewitt, Roberts, Laplacian of a
Gaussian (LoG), Zero crossings, and Canny. Canny, as the one of the most powerful
method, is applied to the project and compared $obi@l.

Gray-scale Image Processing

Gray-scale image can be used directly in edge tietemethods since edge functions
have steps to convert gray-scale image to binapgceRtly, there are methods that
directly apply the line detector masks to the gsesle images and then extract the
detected lines from the processed images by safegiixels with responses are not
constant. Constant response means there is nondisaity. However, if there are
intensive small noises in the background, it wdoddvery difficult to extract detected
lines from the processed images since there isamstant response. Converting to
binary image was used to eliminate the irregulaise® in the background. Hough
Transformation was also investigated to find thee Isegments and circles with gray-
scale images corresponding to the Hough transfdrao,(2005 and 2010). However,
further study is necessary to consider applying d¢fourransformation in crack
inspection.

Research Problem

The primary objective of this research is to inigege whether wind turbine blade
surface images with known cracks can be detectddfao, how much of the crack can
be capture and identified with computer-based vVisnapection. To achieve this

objective, this research will address three questimamely: 1) to what extent can
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surface cracks be detected on WTBs, 2) how seasitie these methods to variations in

crack parameters, and 3) how can we characterzseberity of the cracks?
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CHAPTER 3: METHODOLOGY
Description
The methodology contains four major sections.

1. Sample crack generation: Six representative syiothetcks were generated and
four field images were selected to study the patara¢hat define detectability.

2. Line detection method: Is it possible to quicklas@ WTB and find cracks?

Edge detection method: How much of a crack’s detml be captured?

4. Crack quantification: How does one define the sgvef a crack (e.g., size,
color)?

w

Summary

A series of synthetic cracks were generated to nsteled the common characteristics of
a composite surface crack and the factors thaheédfie visibility of a surface defect.
The reason why synthetic cracks were used is bedaesavailable crack image pool is
limited and it is necessary to define the fundamlecttaracteristics of a crack. Brownian
motion was used to create a random crack with latioa between neighboring points
on the crack. Variations in thickness and color evafso included. Line and edge
segmentation algorithms were developed to detestinfea and nontrivial thickness
cracks. Line detection was applied first to provilde capability of a quick overall scan
of images of rotor blade surfaces and then the ddtgrtion method was used to extract
smoothing information from the original images. Theal was to define how much
detail of a rotor blade’s surface defect could &enfd with digital image processing. In
addition to understanding the detectability of thethod, it was necessary to understand
any potential error that image processing mightoohice. A defect quantification

algorithm was developed to quantify the recognigedace defects. Finally, the method
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was tested on a group of well-selected site imagesthe findings were addressed in the
results section.
Sample Crack Generation

Synthetic Cracks

To understand detectability, a set of represergatinthetic cracks was generated with
one dimensional (1D) Brownian motion to create dasin a controlled fashion. “1D
Brownian motion is composed of a sequence of ndymdistributed random
displacements and their sum represents a part@jectory in one dimension (EPFL,
p2).” The background color of the synthetic craskss defined as either white or light
gray to be consistent with the paint color of aordilade. The color of the synthetic
crack itself was varied to represent the severitg orack. The color of surface cracks
gradually changes as the cracks go deeper intsuttiace and become easier to identify
in digital images. The complexity of a synthetiadk was reflected in its non-uniform
thickness, variation in color, and small derivatovacks.

Difference of intensity level of pixels, irreguldistribution and geometry of noises, and
uneven illumination of the image background aree¢hmajor concerns that can
significantly decrease the detectability of a cré@onzalez, 2004). Also the geometry
and color of a crack may have some level of impawctthe defect detectability.
Therefore, we generated three representative grofipsynthetic cracks to test the
corresponding three hypotheses listed in Tableyhthgtic cracks can better represent
the random nature of cracks because they are nexiblé for manipulating the key

parameters of a crack. The only difference betwkersynthetic cracks in Group 1 is the
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intensity level of the pixels on the backgroundeBecond group was used to examine if
computer-based visual inspections can find defégnasare difficult to see with human
eyes. The third group explained how much of a cicaok be detected if there is severe
noise or uneven illumination of the background.

Table 1. The characteristics of synthetic cracks it may affect the detectability

Group Hypothesis Characteristics of the synthetic cracks
number
Different intensity level of pixels | The color of the cracks is the same, but the
1 of the background of a crack background colors are white and light gray
affects its detectability. respectively.

Computer-based visual inspectiopn Same level of color difference between a
can observe small thickness cracksrack and its background. However, the

2 or weak intensity level of pixels | color of the cracks is different. Same as the
that human cannot see. background color. One unit thickness.
Irregular noise and uneven Non-uniform thickness of two synthetic

3 illumination affect detectability. | crack images. One has irregular noise ang

the other has uneven illumination

Parameters of the Synthetic Cracks

Six synthetic cracks were created according tohyyeothesis in Table 1 to find the
factors that define the ability to detect surfac&cks of a wind turbine blade by digital
image processing. The goal of the synthetic cupsgh was to represent the parameters
of a crack and to reflect the parameters of thenotethat may affect the detectability.
Each group contains two synthetic cracks and alhef have the same image size. All
of the synthetic cracks have the same startingtpah the origin of the coordinate
system (0, 0). However, the starting point canddected by the user in the algorithm.

For the first group shown in Figure 3, one synthetack has a white background with

RGB values of [255, 255, 255] and the other oneahlight gray background with RGB
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values of [211, 211, 211]. Both of the cracks htheesame gray color [190, 190, 190]
with a uniform thickness of three pixels. This guoof samples addressed some of the

effects of background color on image processingltes

(0,0, (0,0) Xmax: 432 pixels

Xmax: 434 pixel
Ymax: 335 pixels

Ymax: 328 pixel

Figure 3. Different intensity level of pixels of te background of two synthetic cracks (a)|(b)

In the second group shown in Figure 4, the backgtocolors of the two synthetic
cracks are white and light gray, the same as itfitsiegroup. The image with the white
background color has color index [234, 234, 234]ite cracks and the other one has
color index [190, 190, 190] for its cracks. The rnars were selected to generate
hairline cracks that have a very small intensiffedence from their background and are
hardly recognized by human eyes. The purpose ofs#mples in Group 2 was to
understand the relationship between background eold the color of the crack itself.
Both of the synthetic cracks in Group 2 have umifahickness 1, which examines

whether the detection method is sensitive to ma&ilhickness cracks.
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0,0 Xmax: 440 pixels (0,0 Xmax: 434 pixels
Ymax: 341 pixels Ymax: 341 pixels

Figure 4. Hairline thickness synthetic cracks withdifferent intensity level of pixels (a)|(b)

(0,0) , o Xmax: 435 pixels
' ' ' ' Ymax: 338 pixels )
p 0 N \

(0,0) \ '\ /I \/
I~

Xmax: 434 pixels

Ymax: 341 pixel

-

Figure 5. Non-uniform synthetic cracks with (a) nase and (b) uneven illumination

The third group shown in Figure 5 has two non-umifghickness synthetic cracks with
one that has a maximum thickness equal to 9 anththienum thickness equal to 1. The
color of the crack is selected as honeydew [246, 280] to represent a severe crack
that goes into the fiberglass lamination. The bamlgd color is white with a transparent
color from -40% to 20% and irregular noises. Aftenverting the image to gray-scale,
the background turned white since the hue andaatarwere eliminated. The reason to

design a non-uniform thickness/width crack was e¢tednine the relation between the
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thickness of a crack and the degree of continuitynaging processing. The other crack
of the group had the same size but contains sagmfi uneven illumination in the
background, which cannot be eliminated by transfiognthe image to gray-scale. These
representative synthetic cracks were analyzed ugiagfollowing methods and their
results were compared to the results from fieldgesain the result section.

Representative Field Images

Four field images were selected to further inveddghe hypothesis in Table 1 and to
evaluate if the parameters that define the detéityalare consistent with the six
synthetic cracks. After testing the method on tired groups of synthetic cracks, the
four field images shown in Figure 6 were used tal@ate the accuracy of the method.
The results are compared to the synthetic crackbdmresult section to check whether
the synthetic cracks captured the basic charatitarisf a real crack. Three of the field
images were representative of early gel-coat fedand the last one was a severe crack
along the trailing edge that could be considereded®nding. One was a hairline crack
and was recognized as the most difficult flaw ttedewith the human eye. The hairline
cracks shared the same characteristics as theetigntihacks in the second group. The
second image was a stress crack. It was used terstadd the impact of uneven
illumination to the detectability of an image. lagvalso used to address the importance
of the direction of the line detection masks. Ardhcrack was crazing, which typically
has a spiderweb geometry and some of the smalksraca crazing may not follow
along the four directions of standard line detextofrhe second and third images

evaluated whether the uneven illumination and rmomi#ected the detectability of an
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image as the synthetic cracks in the third groopaddition, the first two crack images
had turbine blades painted in light gray and tts¢ ¢ane had white turbine paint, which

indirectly explained why it was necessary to hdngegynthetic cracks in the first group.

(a) Hairline crack

Figure 6. (a) Hairline crack (RGB image: 157-by-27p (b) Stress cracks (Gray-scale:
247-by-350). (c) Crazing (RGB image: 270-by-4350) Severe crack (Gray-scale: 573
bv-2673)
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Line Detector Masks
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A line detection method was used to perform a gsaan that could be used on a large

scale wind turbine blade. It is simplg
fast, and sensitive to individual lin
segments. Cracks can be treated 3
set of segments. A line is a basic ty
of intensity discontinuity in a digita

image and the most common meth

\Y*

D

to detect them is to process the image

with a linear spatial filter mask with
binary format as shown in Figure
The process consists of moving tk
center of the mask from point to poif
in an image and computing th

response at each point, which is t

sum of the product of the mas

k

S a
pe
Convert to
gray-scale
v
Define global
hd Threshold T
Convert Optimize
to binary Threshold T
[
A y 7 Y
Horizontal Vertical 5 .
Mask Mask T4 -4
\i [ i 1\

Figure 7. Schematic of quick line detection

Output

defects

coefficients and the corresponding neighborhooelpiXes in the area spanned by the

mask and is given by

n
R = Z W;Z;
i=1

where,z; is the intensity of the pixel associated with nha@sk coefficient;.
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Theoretically, only an odd number length of maskednsidered since is the response
from the center of the filter mask at a specifitnp@, y). The smallest mask is3ax 3
matrix and there are four standard line detecti@ska corresponding to the orientation
of the lines, namely, horizontal, 45°, verticaldad5°®. The larger number — 2 — in the
mask matrix represents the direction of the mask iamas a strong response to one
pixel thickness segments. For instance, the vértioe with thickness one is the

strongest after filtered with mask in Figure 9 (d).

(0,0)

R= W12'1'|‘ W222+...+W929

“}3_.-" ~MWa o W3 e — /
— L . "'--._:\)

i i i | Fa=1p-1) f(xyh Ax+1y-1)
o wy | ws 7 z Z3
~-| fle—13) Flxy) fles1y)
s Z3 Zg
fla—ty+1) | FayFo-L fasiy+1)
Z7 Zg Z5 =2

\mf P

Figure 8. The mechanics of linear spatial filtering The magnified drawing shows &8 x 3
mask and the corresponding image neighborhood dirély under it (Gonzalez, p90).

Increasing the number from 2 to 3 smoothed theututpage but continually increasing
the number will create fuzzy results. Although teetical line detector masks responded
strongly to one pixel thickness lines, it can reueg all vertical lines with different

thicknesses as shown in Fig 9 (b).
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(©) (d)

Figure 9. (a) Original image. (b) Result of processg vertical mask in Table 2. (c)
Absolute value of (b). (d) Strongest response witj>=T, g is the response at each pixel 0
the original image

)

Table 2. Standard line detector masks (a) Horizonta(b) 45°. (c) Vertical. (d) -45°

-1]-11-1 21-1]-1 112 (-1 -1]-1]2
21 2|2 112 -1 112 (-1 11211
-11-1]-1 -11-1] 2 -1 2] -1 2 -1]-1

The binary union operation in Figure 7 combines tieection results of the four

standard line detector masks, which can offer ncoraplete results. The standard line
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detector masks have a response equal to zeroiihdis& is in areas of constant intensity.
Otherwise, the strongest response represents betidn of a detected line. In the line
detection algorithm, images were converted to acobrome format and then the four
different masks were applied to the image. Thereevieur responsg®, | , |R,|, |Rsl,

and|R,| with respect to the four line detector masks. TEngest response of a point in

the image defined the orientation of a line paskespoint such as it is vertical |iR5]

has the largest return value. Mathematicdly| > |Rj Vi#i&i,je{l,2,3,4} had
the line direction ag mask.

The line detection mask elements shown is Table 2tandard line detection masks and
have strong response to one-pixel thickness liBgschanging the mask value, it will
give a different response to the thickness of akcrBy multiplying2™ to the standard
vertical mask and obtain new detection masks &gare 10 (a) and (b), the strongest

responses were happened on thicker lines, thehedam optimal number, and returned

to same results as the standard vertical mask bahmmore fuzzy.

(a) (b) (c)
Figure 10. (a) All three vertical lines have strongesponse (b) As Figure 9 (d) but

smoother. (c) Middle line has the biggest thickness

41 8| -4 -8/ 16| -8 -1 3 -1
418 -4 -8116]| -8 -1/ 3 (-1
418 -4 -8116] -8 -113 -1
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Therefore, standard line detector masks are wékguo this goal since they have
strong response to 1-pixel thickness cracks andded@ct the other cracks as long as
they are along the direction of the mask within 3¥8ghborhood.

Binary Union Operation for any Possible DirectidrCoacks

What if there was part of a crack (thickness < 8els) in the image that was not

oriented the same as the fo(r

masks above? Then it is —y

Define global
Threshold T ‘
complex to have line detectgr e —L
onvel pumize
Threshold T
masks for every possible | v v N
‘ Horizontal Vertical l 450 || 450 ‘
Mask Mask .
H H H \?,S ?]j v v Valid X Binary Union
direction of lines. However = ) et
[ Rotate Image at 10° l
one method is to rotate the v v v v
| Honzolr(nal VI\eAmckal 45 || 450 } (=12 15
M: 32y caey 3
. . . \al/s \T/S \ \V Binary Union
image counterclockwise with a 35| Operation

user defined step size while Lo Qunt
efects

keeping the masks stationary, Figure 11. Schematic of updated quick line detectio

say 1°. After line detection, we can rotate thegméack to its original orientation and
take the union operation, which maps the detedteudsffrom each rotation step to one
united matrix. Therefore, the line detection methall be able to detect more defects
that were limited by the direction of line detectoask. The change to Figure 7 can be
seen in Figure 11. However, rotating an image ey small angle will significantly
knock down the detection speed. Based on experidfi¢ds a reasonable step size that

can capture cracks from every direction with a @eeeptable fast response.
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Optimize Threshold T

A threshold number is used to convert a gray-stadge to a binary image. Suppose
f(x,y) is an image and is a selected threshold number, any p@iny) > T turned to
1 and is called an object point. Otherwise, thenptuirned to 0 and is called background

point. A threshold imagg(x, y) is defined as

C(Lif oY) =T
9txy) = {Oiff(x,y) <T

MATLAB toolbox provides a function callegraythresh that computes a threshold using
Ostu’s method (Gonzalez, 2004). However, this neettemds to generate significant
noise when the background illumination is unevemads difficult to quantify the size of
the crack since the high illumination backgrounddme object points and points within
the crack became background points.

Noise makes it more difficult to extract the defedbrmation from the original image
and it is one of the major concerns in line detectiBoth line and edge detection
methods have difficulty finding the “optimal” thitesld number when the image has an
uneven illumination background. Opening image ig evay to eliminate the uneven
background.

Opening Image — reducing uneven illumination

An opening image is a transformation that extréeésmajor object from the image and
subtracts the leftover non-uniform illumination kgwound from the original image. It is
used to reduce the uneven illumination on the bamkgl of an image, which typically
cause failures of computing threshold number. MABLAInctionstrel was used to

construct structuring elements such as a linedisla It had two input variables: shape
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and parameters, where shape is a string specifiggngesired shape, and parameters are
a list of parameters that specify information abttwt shape, such as its size (Gonzalez,
p. 342). The line detection algorithm used linedasired shape. A line shape created a
flat and linear structuring element with specifiethgth and direction. For instance,
strel('line’, 10,90) returned a flat, linear structuring element thatemdst 10 pixels
along vertical direction. If the image is rotatirthen one can keep the line structure
elements oftrel stationary. One easy way is to fix the degreerpatar ofstrel to 0
degree and to rotate the detecting image 10 deg@dstime counterclockwise as line
detecting algorithm in Figure 11. Thus we can exttliames exceeds 10 pixels in most
directs. Then subtract the opened image from iigira with functionimtophat and
imbothat in MATLAB. A comparison of before and after opegimmage with line
detection methods will be addressed in the resétdion. Opening image does not
improve the results very much for edge detectiothotkcanny that is becauseanny is
based on more complex algorithm which will be ekpd in the edge detection section.
Edge Detection

One major advantage of edge detection is no eveddmat the uneven illumination will
noticeably decrease the detectability. Edge detectvas used to capture the outer
contour of non-uniform thickness cracks and to cement the inadequacy of line
detectors for detecting meaningful discontinuiti@es intensity values. Unlike line
detection, edge detection uses first- or secondromkrivatives to compute the
maximum rate of change of gray levels of pixelsg&detection gave much smoother

results while eliminating noise (or small hairliceacks) that probably will miss one
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pixel thickness hairline cracks. Therefore, linéedéon was applied first so that a quick
overall scan of images of rotor blade surfaceshmperformed in a reasonable amount
of time and then the edge detection method was tsedtract smoothing information
from the areas identified by the line detection.

Edge detection has the same steps as linear detectFigure 7 except for using edge
detection masks, rather than using standard linectien masks. The third group of
synthetic cracks had non-uniform thicknesses andescalong the background. Edge
detection was used for both of the synthetic cracidsthe results were compared to line
detection in the result section.

Edge Detector Masks

Edge detection is by far the most widely used neihamage segmentation. MATLAB
has functiongedge(), that supports several common detect8abel, Prewitt, Laplacian

of a Gaussian (LoG), and Canny. The key difference between these methods can be
found in how the first or second-order derivativaee approximated. The first order
derivative in image processing is callgdadient and is a vector for a 2D function

f(x,y) given by

-]

I
1

o 0

I
% %

1/2

with the magnitude of the vector as=mag(0f) =[G} +G;]"* and angle as

a(x,y):tan‘l(%), where the angle defines the edge direction. BbéhSobel and
y
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Canny methods were considered sirfsgbel is most the commonly used a@@nny is
considered to be the most powerful edge detectioe. flinctionPrewitt has identical
parameters aSobel but with smaller numbers in its mask. Thus, it whghtly faster at
computing but tended to produce noisier resulte O&G method uses second order
derivatives and includes complex steps to elimimaiise and locate the double edge
detected by theaplacian method.

The edge detectorSobel and Canny were used in the project due to their ability to
capture discontinuities and eliminate noise. Hobel function had default masks as
shown in Table 3 to compute the gradient of a 2Bcfion, which is composed of

vectorsG, and G, which were given by
G, =(z+2z+2)- (3 +2z+2); andG, =(z,+22,+2) (2, + 22, + 7))
where, z,...,z, are values of pixels in the image that sparStiel masks.

Table 3. Sobel detector masks (a) Vertical. (b) Horizontal

-11-2]-1 -110] 1
0/]0]O0 -2/ 0| 2
11 2] 1 -1 0] 1

It is complex to change the mask number here sacé of the gradient algorithms has
its own detection masks and cannot be changed/emsline detection masks. Also it is
not necessary to update the maskers since thetetttexsults of all ten samples show
positive results in the results section.

The Canny method is more complex and includes a Gaussitn,fd local gradients and

edge directions computation algorithm, and provieége linking by incorporating the
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weak pixels that are 8-connected to the stronglgixé the user does not select a

threshold number, th&obe and Canny methods will generate a threshold number

automatically, where the threshold Sdbel is a number and the threshold@dnny is a

two element vector.

Optimize Threshold T

The default threshold numb
generated bySobel or Canny does
not guarantee a positive
However, both of them offe
promising results by optimizing th
threshold value. Th&obel method
offered less noisy results comparyg

to Canny but also tended to miss

significant number of the defects

where Canny’'s noise tended to be

small contours. By updating th
threshold numbeiCanny offered the

smoothest result, whergobel does

resuit.

-

t
Convert to
gray-scale
h N7 Vv
i Apply Sobel with Apply Sobel with detected

detected edges A;, T;

edges Bi, T; = [tai, tail

— Ti41 =T; £10% X T;

Titq = [t £10% X ty;, tp
+10% X ty]
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Apply Sobel with
2 detected edges Aj; 4
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detected edges B; ;4
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D

defects

not reduce background noises ve

ry

A

Figure 12. Schematic of edge detection for detailed

V
C=Ajq ﬂ Bit1

much by changing the threshold number. Howevers tieiquired a lot of human

intervention, which is not the goal of the reseailahthe project, the default threshold

number was used first and then updated the thréshohber with a fixed rate. Apply
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the edge detection method again and compare watlptdvious detecting results to see
if the difference is within an acceptable toleran€er instance, the default threshold
value of Canny method isT = [t;,t,] and the results is a matrik contains all the
detected edges along the cracks. Update threshaldievto T; = [t; +.1 X

(t, —t1),t, —.1 x (t, — t;)] and applyCanny again with resultgl,.Repeat the routine
until 4;,, — A; < D, whereD is the tolerance as shown in Figure 12. Bathel and
Canny have recognizable edges. Since the major diffeehetweersobel and Canny
were the amount and geometry of noise, one posafijeoach was to take the binary
interaction operation of the detecting resultsSobel and Canny to obtain smoother
results. However, it did not eliminate very muchseo

Quantifying the Size of a Crack

Two methods were used to quantify the magnitude cofack. The first and also the
easiest way was to find the minimum enclosing regia (parallel to the x and y axes)
that enclosed the points along the crack. Thisndefithe most likely required repair
area. However, it did not give any further inforroatabout the orientation of the crack
and tended to overestimate the magnitude.

The second approach was to define the minimum simgjorectangle that was not
oriented with respect to the x and y axes. Thislccde found by estimating the
parameters of a line that minimizes the maximuntadise to all the points on the crack
edges. Using the start and end points of the linénding the end points on the edges
along the line, the sides of the rectangle are ddoy projecting the end points onto the

estimated line. The other two sides are determimedhe maximum deviation of the
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crack on each side of the line. In order to minertize maximum distance to the line, the

functionfminimax in MATLAB was selected to find the best fit paranmezline, denoted

x=at+b . . . N
by { y=ct+d - The functionfminimax, requires an initial guess for the parameters of

the line |, b, ¢, d and a function that computes the maximum distaoicall points
along the edges to the given line. The functiopstehen the values od,[b, c, d] are
within a specified tolerance (i.e., there is norde or reach the maximum number of
iterations. The default iteration limit is 500 iINAMILAB. In this study a limit of 2500
iterations was used.

Two Kinds of Errors

Computer-based crack detections methods make twdskof errors: false-positive
identification of cracks (Type 1) and failure taeld existing cracks (Type 2). One kind
of error occurs when a crack is detected but doegxist (i.e., a Type 1 error). This can
be caused by noise, which cannot be totally avoitfdtie noise is significant, then it is
difficult to quantify the crack accurately. The etlone is missing defects (i.e., a Type 2
error). In other words, the defects or part of gedeis not recognized with the line and
edge detection algorithms. This could be due td mgn-uniform illumination of the
image background. The consequences of a Type fiartbis context are not as severe
as the Type 2 error, since missing defects can l@adgnoring the necessary
maintenance, leading to future structural damaggpeT2 error can be reduced
significantly by adjusting the threshold number &ydapplying binary operations to the

results of line and/or edge detections.
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CHAPTER 4: RESULTS
Description
The answers to the questions in the methodologgtehare listed below.

1. Noise, the intensity level of pixels, and unevdumiination are major parameters
that affect detectability.

2. Line detection method is suitable to quickly scaWBB and find cracks since it
minimizes Type 2 error.

3. Uneven illumination is not a major factor in edggeattion method<Canny
offers the best results in reducing both Type 1 Bypk 2 errors.

4. The severity of a crack is difficult to quantifyolever, the crack span size and
intensity level of pixels offer important insighas the magnitude of a crack.

Summary

The ten samples, six synthetic cracks and fouresstative filed images, were tested
with both line and edge detection methods. Althotlg#re is a tradeoff between false-
positive identification of cracks (Type 1 Error)cdafailure to detect existing cracks
(Type 2 Error),Canny had the best results by far in terms of reducigtivo types of
error. Generally, uneven illumination has much legkience on the detectability of
edge detection methods compared to line detediona very bright background, edge
detection offered much better results as showngnrgE 14. Unlike line detection, edge
detection eliminated low levels of noise and theedied edges were much smoother.
The opening image technique was applied in thed&tection method to reduce uneven
illumination and the results were poor with gradjughanging uneven illumination as
seen in the stress crack sample shown in Figuig).6lr{ addition, the line detection
method was very sensitive to discontinuity and thlus detected results had more Type

1 errors as compared to edge detection methodsettwthis was not in conflict with
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our goals that line detection could be used asiék@mean of the entire turbine and edge
detection methods were used to capture the detafednation of the crack. The crack
quantification algorithm drew the approximationgiwith minimized maximum distance
to all the detected edges, including noise. Theallgh lines to the approximation line
that enclosed all the defects were used to deflmeuading box.

Line Detection

With the rotating image and binary union operatimided to the line detection method
as shown in Figure 11, line detection was ableafture cracks in every direction (not
only horizontal, vertical, +45°, and -45°) and ttaircase caused by the small size of
3X3 detector masks was minimized. Line detectorkmase very sensitive to noise and

thus, it minimized the Type 1 error but had difftguwith Type 2. The line detection

%i.n
(a) Hairline crack. '(b) Stress cracks. (c) Crazig.
Figure 13. Field sample of line detection

method showed high detectability of the hairlinackr shown in Figure 13 (a) with the

original image in Figure 6 (a). The hairline craskvery difficult for human eyes to
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detect but line detection easily found it. The apgnimage technique was used to
reduce the negative impact of uneven illuminatidowever, the results were poor, as
shown in Figure 13 (b). Line detection had troudlieninating background noise like
dirt on the surface of turbine blades. For thissogait is necessary to apply edge
detection methods to the defective areas detegtéidddetection method.

Edge Detection

Edge detection methods lil@bel andCanny offered much smoother results compared
to the line detection method. Noise and unevemithation did not have a significant
impact on edge detection. The intensity level akfs is very important to both line and
edge detection methods because if the intensigl lgvnoise is larger than the intensity
level of the defect, the defect will not be detdcsence the computer will consider it to
be background noise and eliminate it. When tessiythetic cracks with both line and
edge detection method, the first two groups andfitbe four synthetic cracks had the
same results. Neither the color or size of thelc@aftected the result. In other words,
both the line and edge detection methods couldyedstect hairline cracks. However,
both Sobel andCanny had to adjust the threshold values to detect smaneks. Without
the threshold adjustmentSobel and Canny had difficulty detecting stress cracks with
highly uneven illumination and crazing cracks wmitisy backgrounds. With the default
threshold value, it is difficult to say which methoffered better results as shown in
Figure 14 (a-1) and (a-2). That saldanny can significanlty improve its results by
optimizing new threshold values. The results urtadel, however, were not improved

so easily by changing the threshold values. Sifalsel and Canny have different
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gemoetries of noise, we applied intersection opmrdb the optimized results in Figure

14. (b-1) and (b-2). The intersaction operatiomisigantly reduced Type 2 error without

generating too much Type 1 error.

(b-1) Stress crack — Sobel optimal

(c) Stress crack — Sobel optimal (d) Stress crack — Canny optimal

Figure 14. Edge detection reduced uneven illuminain significantly
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The crazing crack from Figure 6. (c) contains adbhoise, which is common to rotor
blades, especially in a places like deserts witbngt wind. BothCanny and Sobel were

able to reduce the background noise impact, whielans the computer-based visual

inspection method is feasible for onsite appligatio

(a) Canny optimal (b) Sobel Optimal
Figure 15. Edge detection reduced noises significidy

Factors Affecting Detectability

Intensity level of pixels matter

The first group of synthetic cracks did not shoattthe method can detect a crack with
lighter background color easier than the one witinker background color. When
applying thegraythresh function, the two images resulted in very diffdreptimal

threshold numbers. With the optimized thresholdie@a) both of the images resulted in
clearly delineated defects. Not surprisingly, thpplecable threshold range was
significantly different between the two images. Tdvee with a white background had
valid threshold number from 0.746 to 0.999. But ¢time with a gray background had a
threshold number between 0.745 and 0.827. Highesshiold numbers were able to

eliminate more noise with low- to middle-level ingity from the background, which
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can make the results much clearer if there is afloise in the background. However,
the tradeoff is that some of the defects can beedisf the defect has a lower intensity
level than the noise in the background. One exangpkhown in Figure 16 with the
Sobel method. When we selected a threshold value of, @dtBer than 0.065, most of
the cracks and background noises were eliminateduse the pixels in the image had
an intensity level lower than 0.12 and all of theefs turned to 0. If the crack had a

much higher intensity level than the backgroundgegihen the results had little noise.

(a) Sobel threshold 0.065 (b)sobel threshold 0.12
Figure 16. Edge detection affected by intensity l&l of pixels

Crack thickness is not a factor

Surprisingly, based on both synthetic cracks aetll fimages, crack thickness did not
affect the detectability of a crack. The line détect results of the first two groups of
synthetic cracks can be found in Appendix A. Initdd, Figure 13 shows that
computer-based visual inspection method can findllsthickness cracks like hairline
cracks very easily. These results suggest thatdhguter-based method may be a better
alternative to using sky workers to visually inspelade surfaces.

Crack orientation is not a significant factor
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In the line detection method, images were rotateanter-clockwise with 10 degree

increments and then the line detector masks wele @b capture lines from most

directions. Binary union option mapped all the detd lines into one image as shown in
Figure 13 (c). Edge detection methods are basefitsin or second- order derivatives,

which are not influenced by crack orientation. Hfere, both line and edge detection
methods in the project were not affected by cradkntation. In other words, the

orientation of the field camera is not expectedffect the results.

Background illumination matters

Automatic threshold computing methods tend to idien the background illumination
of an image is uneven (i.e., there is variancenegixel values). Uneven illumination
had a severe impact on the line detection methaghawn in Figure 13 (b), where the
opening image technique was applied to reducentipadt of uneven illumination. The
opening image technique did not improve the residty much. The original image of
the stress cracks in Figure 6 (b) had very brigititing on the background and the
results were poor even after the opening imagegsdnly one of the three cracks was
detected and most of the pixels associated withctiaeks were deleted during the
opening image process. Therefore, the lighting leratkstill poses a challenge to reliable
crack detection for line detection method. Furttesearch is warranted to reduce the
effects of uneven lighting on crack detection. Edgeection method reduces the uneven
illumination problem for the same cracks shown igufe 14. (b-1) and (b-2). This

supports the hypothesis we made earlier that itldvbe most effective to use the line
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detection method to do a quick scan and then agubdye detection method to maximize
the details of a crack.

Quantifying the Cracks

After the flaws were detected, they were bounded rectangle and two parallel lines.
The rectangle indicated the recommended repair. difea two parallel lines indicated
the direction and magnitude of the cracks. Howeifethere was a lot of noise, the
parallel lines were just the lines parallel toreelwith minimized maximum distance to
all the points detected, which included noise aed/\small flaws as seen in the results
in Figure 13 (c). Therefore, eliminating noise agchmas possible is very important in
estimating the magnitude of a crack.

The first synthetic crack in the Group 1 was selé¢b address the results of quantifying
a crack since the direction of the crack is clagilyd we can see clearly if the
approximation line follows the direction of the cka Other samples either has the same
structure as this one, for instance, cracks in @2, Group 2-1, 2-2, and Group 3-2
have the similar cleanness or contains too muclsend® observe how close the
approximation line follows the direction of the cka(see Appendix A). First, the
recommended repair area is enclosed in the bluangle with 423-by-301 pixels. The
original image has 434-by-328 pixels shown in Fg8¢a). An approximation line with
minimized maximum distance to all the points altimg crack was generated is shown in
Figure 17 in green and the parametric functiorhefdgreen line is:

{x = 439.2590 * t + 202.6571
y = 277.2023 xt + 166.7593

wheret € [—0.46,0.502].
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The two parallel lines in red enclosed the crackh minimum distance to the green line

as shown in Figure 17.

Quantifying the Synthetic Crack in Group 1 -1

301

Blue Rectangle:
423 - by - 301

423

Green aprox. line function:
¥ = 439.2590" + 202.6571
y = 277.2023* + 166.7593

Figure 17. Quantification of the Synthetic Crack inFigure 3 (a)

The severity of a crack was defined by its intgnalong the crack and its size. The size

of the crack is shown in Figure 17. However, théensity of the crack is not

straightforward since the line and edge detectiethods only detected the edges of the

crack. Also, the location of the cracks on the Wdah be critical. For instance, if a

crack occurred along the leading edge or the reotiam may create more potential

damages or accelerate the potential structural dartiean other areas since the leading
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edge contacts the wind first and the root sect@sore accumulation of fatigue loads.

However, all of these are hypothesis, which regfuirther study.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK
This paper evaluated two computer-based methoddefi@cting cracks in wind turbine
blades: the line detection method and the edgeadeithe original hypothesis was that
the line detection method would be best for perfogra quick scan of the blade surface
to find cracks, but that the edge method would pi®\better data on the crack. The
results of the study support our hypothesis.
The line detection method is appropriate for queckns because it can quickly identify
hairline cracks that are invisible to the nakedseylenage processing thresholds and
filters can be used to minimize false-positivessealiby surface irregularities like dirt or
dust. However, uneven illumination poses seriooblems to the line detection method
that cannot be overcome.
The edge detection method gives more detailed nmition about cracks than line
detection, but has difficulty distinguishing betwesurface irregularities and cracks. The
most effective method we identified was to firsentify the cracks using line detection
and only then apply edge detection to collect mafermation on the crack. Edge
detection is particularly useful when there is wreillumination.
The results showed that computer-based crack dmtestiows promise for maintenance
work on in-service wind turbine blades. With a hgglality image and processing tools,
computers can consistently identify cracks thatiavesible to human eyes, even when
looking at the blade from different angles.
Further research is necessary to apply these netibathore sample cracks and to find

methods to minimize errors caused by environmerdges like insects.
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APPENDIX

Detection results of sample cracks

Group 1- white background

Group1 - light gray background
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Large crack-disk

Crazing cracks Stress cracks
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